

JC-003-001618

Seat No.

Third Year B. Sc. (Sem. VI) (CBCS) Examination

August - 2019

Mathematics: Maths - 603 (A)

(Optimization & Numerical Analysis - 2) (Theory)

Faculty Code: 003

Subject Code: 001618

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All the questions are compulsory.

- (2) Numbers written to the right indicate full marks of the question.
- 1 Answer the following short questions:
 - (1) Define: Feasible points.
 - (2) Define: Unbounded Solution of LPP.
 - (3) Define: Slack Variable.
 - (4) In the problem of maximization if all the constraints are of \geq then the feasible region is _____.
 - (5) Write the full form of NWCM.
 - (6) Write the full form of LCM.
 - (7) In Transportation Problem having m rows and n columns, the number of allocations should be ______.
 - (8) Define: Convex Set.
 - (9) Define: Strictly Concave Function.
 - (10) Define: Optimum Solution.
 - (11) For which value of p Sterling's method is a good estimate?

20

(12)	For	f(x)	$= x^3$	find	f	(a,b,c)) .
------	-----	------	---------	------	---	---------	-----

- (13) What is the main drawback of Lagrange's Method of interpolation?
- (14) The nth difference of a polynomial of degree n is .
- (15) Name any three central interpolation formulae.
- (16) _____ formula is the average of Gauss forward and Gauss backward formula.
- (17) What is the value of n to derive Simpson's 1/3 rule.
- (18) To apply Milne's method at least how many values are Priorly required ?
- (19) The auxiliary equation k_1 obtained by Runge-Kutta for the differential equation $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1 when h = 0.1 is ______.
- (20) In general quadrature formula integral

$$\int_{x_0}^{x_1} y \, dx = \underline{\qquad}.$$

- 2 (a) Answer the following questions: (any three)
 - (1) Write the Mathematical Form of LPP.
 - (2) Explain in Brief: Artificial Variable.
 - (3) Explain the meaning of Optimization.
 - (4) Explain the rules of constructing the Dual form of given primal LPP.
 - (5) Explain Graphical method for solving LPP.
 - (6) Explain the steps of NWCM.
 - (b) Answer the following questions: (any three)
 - (1) Solve the LPP by Graphical Method.

Maximize : $Z = 6x_1 + 11x_2$

Subject to:
$$2x_1 + x_2 \le 104$$

$$x_1 + 2x_2 \le 76$$

and
$$x_1 \ge 0, x_2 \ge 0$$

6

9

(2) Write the dual of M in $Z = x_1 + x_2 + x_3$ Subject to

$$7x_1 - 8x_2 + 4x_3 = 8,$$

$$x_1 - 2x_2 \le 2,$$

$$4x_2 - x_3 \ge 4$$

 $x_1, x_2 \ge 0, x_3$ is unrestricted in sign

(3) Obtain Initial Solution by LCM.

			T			
		D_1	D_2	D_3	D_4	Supply
	P ₁	2	3	11	7	6
From	P_2	1	0	6	1	1
	P_3	5	8	15	9	10
Demand		7	5	3	2	

- (4) Explain MODI method to find the optimum solution of Transportation Problem.
- (5) Explain Simplex method.
- (6) Explain Hungarian Method to solve Assignment Problem.
- (c) Answer the following questions: (any two)

10

- (1) Explain Big M method to solve The LPP.
- (2) Explain Vogel's Approximation method to obtain initial solution of Transportation Problem.
- (3) Solve the following Assignment Problem

		l Men			
		1	2	3	4
	I	12	30 33 25 30	21	15
Jobs	II	18	33	9	31
	III	44	25	24	21
	IV	23	30	28	14

(4) Solve By Big M method.

$$Minimize : Z = x_1 + x_2$$

Subject to the Constraints:

$$2x_1 + x_2 \ge 4,$$

$$x_1 + 7x_2 \ge 7$$

and
$$x_1, x_2 \ge 0$$

(5) Explain Two Phase Method to solve the LPP.

- 3 (a) Answer the following questions: (any three) 6
 - (1) State any two properties of divided difference.
 - (2) Write the Mine's Predictor formula.
 - (3) Write the algorithm of RK method of second order.
 - (4) Define Lagrange's inverse interpolation and write its formula.
 - (5) Write Gauss's Forward interpolation formula.
 - (6) Define Numerical Integration.
 - (b) Answer the following questions: (any three)
 - (1) If $f(x) = x^3 2x$, then compute f(2, 4, 9, 10).
 - (2) Find f(x) by Lagrange's Formula if f(0) = 648, f(2) = 704, f(3) = 729, f(6) = 792.
 - (3) Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 in the range $0 \le x \le 0.3$ using modified Euler's method.
 - (4) Derive Trapezoidal rule.
 - (5) Find the value of $\int_{2}^{6} \frac{dx}{x}$ by Simpson's 1/3 rule by taking h = 1
 - (6) Derive Sterling's Interpolation formula.
 - (c) Answer the following questions: (any two) 10
 - (1) Derive Gauss Backward interpolation formula.
 - (2) Explain Milne's Predictor and corrector method.
 - (3) Explain Newton's Divided Difference Formula.
 - (4) Explain Bessel's interpolation formula.
 - (5) Derive Simpson's 3/8 rule form quadrature formula.

9